
1 | Page

CG1112 Engineering Principle and Practice
Semester 2 2017/2018

“Vincent to the Rescue”
Final Report

Team: 02-02-01

Name Student # Sub-Team Role
James Arista Yaputra A0170761H Hardware Leader - Hardware
Lee Kok Teng A0168100U Firmware Leader - Firmware
Ler Wei Sheng A0167342E Software Nominal Team Leader
Matthew Alexander Jacobus A0170903L Hardware Leader - Hardware
Srivastava Aaryam A0177603A Software Leader - Software

Ler Wilson

2 | Page

Section 1- Introduction

1.1 Mapping the environment

Vincent, is a search and rescue robot that is meant to be operated both manually and
autonomously. The robot is intended to survey its surroundings with the help of Light
Detection and Ranging (LiDAR), Inertial Measurement Unit (IMU) and the wheel encoders.
Vincent’s mapping can be broadcasted via WiFi onto a Robot Operating System (ROS)
server in the form of visual data to aid in manual controls as the operator will not be able to
see the bot’s surroundings very clearly during operation. The robot will also be able to make
use of the map data to find its way back to the operator upon losing connection or upon
request.

1.2 Place markers

In addition, during the teleoperated phase of the assessment, Vincent will be required
to mark three locations along its traversal path. This will be achieved by storing the waypoint
locations in a stack, to indicate that the positions have indeed been marked.

1.3 Backtracking to the initial location

Finally, Vincent has to tackle the problem of backtracking to its initial location once it
has reached the final location. To solve this, Vincent will store the set of commands issued to
it in a memory buffer on the RPi. Once Vincent reaches the final position, each command in
the memory stack will be inverted in such a way that the robot reaches the initial position,
while making sure it passes through each of the markers set during the teleoperated phase.
Additionally, Vincent is able to signal a visual cue using a Light Emitting Diode upon every
visitation of each marker.

Section 2- Review of State of the Art

2.1 Quince, Search and Rescue robot - Teleoperated

Quince is a versatile search and rescue robot jointly developed by Japan’s
International Rescue System Institute, Tohoku University and the Chiba Institute of
Technology to work as a search and rescue robot in CBRNE (Chemical, Biological,
Radiological, Nuclear or Explosive hazards) type emergencies.

2.1.1 Architecture of Quince

Quince has a modular architecture in both hardware and software components which
allows flexibility in attaching/swapping additional sensors depending on the mission criteria.
The robot’s traversal mechanism is designed to overcome uneven terrain such as debris and
stair steps [2]. As of yet, Quince has been deployed to survey the damages of the Fukushima
Daiichi nuclear plant caused by the East Japan Earthquake on March 11, 2011[1].

2.1.2 Uses of Quince

The robot proved useful when radiation levels were alarmingly high, to an extent that
is too unsafe for workers to work in[6]. Due to its modular base design, modifications were
made to better suit the needs of the survey mission in the nuclear plant. Some of these include

3 | Page

additional sensors and tools such as dosimeters, a water level gauge and a mechanism for
handling a water-sampling cup[7].

Strengths:

1. Powerful motors and well-designed crawlers allow traversal over rough and uneven
terrain, as seen in Figure 1. Some of these features include:

a. Debris filled terrain
b. Staircases

2. Dustproof/Waterproof that allows easy clean up after inspecting hazardous substances
3. Various environmental sensors available for attachment
4. Modular design

Weaknesses:

1. Communication cable rewinding device on Quince was not designed to rewind long
cables and thus failed during the Fukushima Daiichi mission[7]

 Figure 1. Disaster Response robot Quince [6]

2.2 Quince, Search and Rescue robot - Autonomous algorithm module

2.2.1 Movement of Quince

The movement mechanics in Quince is enabled by its low centre of gravity, main
body crawler and four independent sub-crawlers [4]. However, since the movement of every
component is individually teleoperated, there is a possibility that the operator will face
difficulties during stressful missions. This shortcoming was documented during the
Fukushima Daiichi nuclear plant disaster [7].

2.2.2 Future of autonomous version of Quince

A research project started by University of Campinas in collaboration with various
universities, institutes and companies lead to the creation of an autonomous algorithm
module that aims to address this issue [3]. This module adopts different control strategy for
the flippers depending on movement direction [4].

4 | Page

Figure 2. Quince overcoming obstacles with algorithm module

Strengths:

1. Substantially aid the operator in moving the robot, as seen in Figure 2.
2. Reduce operation stress on the operator
3. Provide improved navigation which reduces the chance of accidents

Weaknesses:
1. The algorithm may not be robust enough to handle extreme terrain conditions
2. The robot is still prone to human errors

Section 3- System Architecture

 Figure 3. Overall system architecture for Vincent

5 | Page

3.1 Main architecture of Vincent
The Vincent Search and Rescue robot will have an Arduino Uno microprocessor to

interface with various sensors. The sensors that will be included within the system are as
follows:

1. Magnetometer
2. Wheel encoders
3. Infrared (IR) sensors
4. Light Detection and Ranging (LiDAR) sensor

These sensors will be interfaced to the Arduino using I2C (Inter-IC) or digital input
with the exception of LiDAR, which will be interfaced with the Raspberry Pi 3 (RPi) directly.
To elaborate further, the magnetometer will be used alongside the wheel encoders to
approximate Vincent’s location with respect to its surroundings. The IR sensors will be used
for path correction.

3.2 Interfacing between Arduino and RPi

The Arduino will be interfaced with the RPi, which will be connected to the master
control program (MCP) via a SSH secure channel. The underlying software that will be
implemented for the LIDAR is the gmapping[6], which is a package in the Robot Operating
System (ROS).

Section 4- Hardware Design

Figure 4. Final Design of Vincent

4.1 Overall Vincent Design

As seen in Figure 4 above, the team’s design of the Vincent Search and Rescue robot
consists of various subsystems and additional components. These systems will be explained
and illustrated in the subsequent sections.

6 | Page

4.2 Magnetometer for accurate headings
To provide Vincent with accurate new heading readings while turning, the team

decided to incorporate a magnetometer (shown in Figure 5) to allow Vincent to determine the
direction it is facing. The magnetometer used (MAG3110) is powered with a 3.3V voltage
source, so in order for the Arduino Uno to read proper data from the magnetometer, the team
decided to purchase a logic level converter to convert the 3.3V analog data provided by the
magnetometer to a 5V analog data stream that can be properly read by the Arduino Uno.
Furthermore, to fine-tune the magnetometer readings, the team has also included an offset
calculation routine within the software.

 Figure 5. Magnetometer for Vincent

4.3 IR Sensors for path straightening

To account for the narrow passageways Vincent will need to traverse through, and the
unsynchronized nature of the motors provided, the team opted to use a pair of infrared
sensors (as depicted in Figure 6) to determine the distance of the walls surrounding Vincent’s
sides to allow Vincent to move straight without colliding with the walls.

Figure 6. Vincent IR Sensors

7 | Page

4.4 Use of a new motor driver
The team also decided to use a commercially available motor driver (shown in Figure

7) since the driver has integrated logic gates that simplifies the control interface of the A4990
by reducing the number of PWM signals required. Each channel has a speed control input,
MxPWM, and a direction control input, MxDIR. Arduino pins 9 and 7 are used to control the
speed and direction, respectively, of motor 1, and pins 10 and 8 control the speed and
direction of the right motor.

 Figure 7. Vincent Motor Driver Shield

Moreover, the motor driver has a built in internal logic circuit, the truth table of which is
illustrated below in Table 1.

TABLE I. TRUTH TABLE FOR THE OPERATIONS OF THE SHIELD
MxDIR MxPWM MxA MxB operating mode

0 PWM PWM L forward/brake at speed PWM %

1 PWM L PWM reverse/brake at speed PWM %

X 0 L L brake low (outputs shorted to ground)

8 | Page

Section 5- Firmware Design

5.1 Motor control design
Initialization

➢ The Robot Operating System (ROS) that is hosted by the RPi will launch as a system
service.

➢ ROS will establish a connection with the Arduino mounted on Vincent, the Arduino
would then control the motors and sensors.

➢ The LiDAR will then activate and begin sending data to the RPi, which will then be
used to map Vincent’s surroundings.

Sending user command
➢ The operator will connect remotely to the RPi via a SSH channel.
➢ The operator sends a command with three different parameters namely, direction,

distance or angle for Vincent to traverse, and the power allocated to the motors.
➢ The command will be sent to the RPi through a local area network connection.

Processing user command
➢ A subroutine takes in the three parameters as input and signals the A4990 motor

driver channels through the respective Arduino pins. The motor driver then relays the
appropriate signals to each motor.

➢ Another subroutine computes the target travelled distance using the input traverse
distance and current travelled distance measured with wheel encoders.

➢ The motor spins and Vincent starts to move.
➢ During movement, the program continuously poll for the current travelled distance.
➢ In addition, the IR sensors detect close proximity with walls on each side and adjusts

each motor accordingly to avoid collision.

Termination
➢ When the current travelled distance matches the target travelled distance, the motors

will stop and movement is completed.

5.2 Magnetometer-based turning
Initialization

➢ The magnetometer is initialized using the Wire library by specifying to the Arduino
the I2C address of the magnetometer, and which register will be used to store
readings.

Sending user command
➢ The operator will send a command specifying a turn (left or right).
➢ The angle parameter specified by the operator will then be passed to the heading

processing subroutine.

Processing user command
➢ After the angle parameter has been received, the subroutine computes the destination

heading required using the angle parameter.
➢ Vincent starts turning.
➢ During turning, the magnetometer continuously poll for the current heading.

9 | Page

Termination
➢ When the current heading matches the destination heading, the motors will stop and

the turning is completed.

5.3 Communication Protocol
Initialization

➢ A dedicated router is used to provide a wireless connection between the RPi and the
master control program.

➢ During initialization, the RPi will begin sending requests to the Arduino via a USB
cable.

➢ The Arduino will then begin receiving data from the sensors via the I2C interface or
analog pins and begin processing it.

➢ The Arduino will initialize and remain idle until a user input is passed by the RPi.

Sending user command
➢ When a command is entered, it will be sent to the RPi, this packet of data would be

sent wirelessly to the RPi.
➢ The RPi will send the user command to the Arduino.
➢ An USART RX Interrupt Service Routine (ISR) will be triggered once the Arduino

has finished receiving the operator input.
➢ In this ISR, user data received from pin UDR0 will be read. Then, the interrupt flag

for the received data will be reset.
➢ Once Arduino has successfully processed the command, the MCP is notified and

waits for next input.

Processing command
➢ There will be several predefined user inputs, each unique input will be mapped to set

the speed and direction of the motors.
➢ Then, the required PWM control pins will be set for each specific motor function such

as rightMAG(), leftMAG(), etc. The motors will then be activated.
➢ An integer will then be passed to the Pololu motor driver shield to be converted into a

valid PWM value to be used to power the motors.
➢ The PWM cycle that is generated will remain unchanged until the user inputs a new

command.

Section 6- Software Design
6.1 General movement - Teleoperated and Autonomous
 Vincent’s movement mechanics can be classified into two main conditions, namely
autonomous and non-autonomous (teleoperation) mode. By default, Vincent is booted up in
teleoperated mode. In teleoperation mode, Vincent requests for user input and process that
command and parameters subsequently. Once Vincent is switched to autonomous mode, it
attempts to process all the commands in the backtrack stack, starting from the top until the
stack is empty. These processes are represented in Figure 8 overleaf.

10 | Page

Figure 8. Algorithmic Flowchart

6.2 Marking checkpoints of Vincent

The Vincent robot would need to mark checkpoints as it passes through the required
locations. These markers are marked based on floating point coordinates on the occupancy
grid. This allows Vincent to mark locations with a 0.05m precision based on the team’s
LiDAR settings.

Once it has passed through all the locations, it will then backtrack using the saved

location markers. This will allow Vincent to navigate autonomously by referring to the
location markers and backtrack through the shortest path that will be determined using a
pathfinder algorithm.
`

11 | Page

6.3 Backtracking of Vincent - Command Stack
Vincent would store teleoperated commands issued to it as it moves. These

commands would be stored in a stack which behaves in a FILO (First in Last out) manner
allowing it to stack up commands until the most recent command. At the end of its journey,
just one last command has to be issued to tell it to perform autonomous backtracking. Vincent
will then pop the instructions off the stack one by one and perform the exact opposite
movement as it traverses back to its origin.

6.4 Backtracking of Vincent - Marker Stack and Quaternion Angles
 On top of the command stack used for backtracking, the team decided to implement
another method of backtracking, where instead of storing commands in the navigation stack
waypoints are instead stored inside the navigation stack. This method would remove any
inconsistencies with incorrect movements during the backtracking phase, as now Vincent will
associate an euler angle and direction to move from its current position to the stored
waypoints. Moreover, all of the waypoints are placed in the stack such that each waypoint is
either completely horizontal to each other or vertical to each other (i.e. markers are placed
each time Vincent moves to another junction).

 In order to associate each waypoint with an euler angle, Vincent needs to listen to a
ROS topic called “Slam Outpose”, and thereby receive a quaternion angle based on the
current heading of the Lidar. A quaternion angle is essentially a linear combination of four
variables, which will be represented as 𝑞", 𝑞$, 𝑞%, 𝑞&for this report. Using the following
equation, we transform the given quaternion angle into a Euler angle which is the standard 0-
360-degree scale:

𝐴𝑛𝑔𝑙𝑒	 = 	𝑎𝑡𝑎𝑛(
2(𝑞"𝑞& + 𝑞𝟏𝑞%)
1 − 2(𝑞%% + 𝑞&%)

)

6.5 A* Algorithm

As an additional feature, the robot can also mark virtual checkpoints into a stack in
the form of coordinates using ROS markers and then find the shortest path to these markers
sequentially. Shortest path will be determined by the A* algorithm [5], O(V2) time
complexity. A* is a variation of Dijkstra’s shortest path algorithm that incorporates heuristics
as a method to determine the shortest path in a graph optimally. In this case, the team has
modeled the SLAM map output as a graph where every grid cell is a node and every node
that is next to each other and not an obstacle is a connected edge. A* is then used to find the
shortest path from Vincent’s current position to the destination marker.

Unlike traditional methods of constantly generating A* star on the map to update and

autocorrect the robot’s path, the team has decided to only generate A* after each junction so
as to save up on computational resources. This will be called by the master control program
in a ROS topic asynchronously and will receive the heading and distance to next junction as a
response.

12 | Page

 A brief definition of a junction in an A* path is illustrated in Figure 9.

 Figure 9. A* algorithm illustration

Section 7- Conclusion

7.1 Important Lessons learnt

Firstly, time management was a key issue that plagued the team’s performance during
the process of generating Vincent, coupled with division of workload being ambiguous.
Initially, the team delegated the workload in such a manner that most of the work would be
software centred. However, after testing with the hardware pieces provided, the team quickly
realised that numerous parts of the hardware would have to be replaced in order to achieve
optimum functionality.

Secondly, the hardware provided, including the chassis for the robot, the battery pack,
as well as the magnetometer, required either complete replacement or heavy calibration and
additional complementary hardware for optimum results.

7.2 Two Greatest Mistakes

One of the biggest mistakes that was made was to follow the specifications of the
project too closely, as they often changed during the course of the project. Hence, quick
adaptations to the tentative plans and material decision had to be made in order to fit the
requirements. Moreover, the shortest path algorithm could be implemented to fulfill phase
two of the project. However, after further clarification Vincent would need to pass through all
the markers during the backtracking stage. As a result, A* shortest path algorithm has been
repurposed to an additional feature in our project.

Due to the team’s marking algorithm, Vincent has a heavy reliance on the LiDAR

generated map. Although this gives a 0.05m precision according to the LiDAR resolution, the
markers were lost as soon as the map warps or shifts out of origin.

13 | Page

References

[1]R. Association, "Robotics Online", Robotics Online, 2018. [Online]. Available:
https://www.robotics.org/content-detail.cfm?content_id=5537. [Accessed: 16- Mar-
2018].

[2]"Meet Japan's Earthquake Search-and-Rescue Robots", Popular Science, 2018.
[Online].Available:https://www.popsci.com/technology/article/2011-03/six-robots-
could-shape-future-earthquake-search-and-rescue. [Accessed: 16- Mar- 2018].

[3]"Videos: Super-mobile rescue robot Quince", TechCrunch, 2018. [Online]. Available:
https://techcrunch.com/2010/05/04/videos-super-mobile-rescue-robot-quince/.
[Accessed: 14- Mar- 2018].

[4]E. Rohmer et al. 2010. Integration of a sub-crawlers' autonomous control in Quince
highly mobile rescue robot. 10.1109/SII.2010.5708305.

[5]"Finding shortest paths on real road networks: the case for A*", zenodo.com, 2018.
[Online]. Available: https://zenodo.org/record/979689#.WtrG9NNubOQ.
[Accessed: 15- Apr- 2018].

[6]"Fukushima’s Radioactivity-Proof Cleanup Robot", nippon.com, 2018. [Online].
Available: https://www.nippon.com/en/views/b00904/. [Accessed: 15- Mar- 2018].

[7]T. Yoshida, K. Nagatani and S. Tadokoro, Improvements to the Rescue Robot Quince
Toward Future Indoor Surveillance Missions in the Fukushima Daiichi Nuclear
Power Plant. 2018.

